The pitch offers an implicit contrast with the likes of Alphabet, Amazon, or Meta, which collect and store enormous amounts of personal data. Apple says any personal data passed on to the cloud will be used only for the AI task at hand and will not be retained or accessible to the company, even for debugging or quality control, after the model completes the request.
Simply put, Apple is saying people can trust it to analyze incredibly sensitive data—photos, messages, and emails that contain intimate details of our lives—and deliver automated services based on what it finds there, without actually storing the data online or making any of it vulnerable.
It showed a few examples of how this will work in upcoming versions of iOS. Instead of scrolling through your messages for that podcast your friend sent you, for example, you could simply ask Siri to find and play it for you. Craig Federighi, Apple’s senior vice president of software engineering, walked through another scenario: an email comes in pushing back a work meeting, but his daughter is appearing in a play that night. His phone can now find the PDF with information about the performance, predict the local traffic, and let him know if he’ll make it on time. These capabilities will extend beyond apps made by Apple, allowing developers to tap into Apple’s AI too.
Because the company profits more from hardware and services than from ads, Apple has less incentive than some other companies to collect personal online data, allowing it to position the iPhone as the most private device. Even so, Apple has previously found itself in the crosshairs of privacy advocates. Security flaws led to leaks of explicit photos from iCloud in 2014. In 2019, contractors were found to be listening to intimate Siri recordings for quality control. Disputes about how Apple handles data requests from law enforcement are ongoing.
The first line of defense against privacy breaches, according to Apple, is to avoid cloud computing for AI tasks whenever possible. “The cornerstone of the personal intelligence system is on-device processing,” Federighi says, meaning that many of the AI models will run on iPhones and Macs rather than in the cloud. “It’s aware of your personal data without collecting your personal data.”
That presents some technical obstacles. Two years into the AI boom, pinging models for even simple tasks still requires enormous amounts of computing power. Accomplishing that with the chips used in phones and laptops is difficult, which is why only the smallest of Google’s AI models can be run on the company’s phones, and everything else is done via the cloud. Apple says its ability to handle AI computations on-device is due to years of research into chip design, leading to the M1 chips it began rolling out in 2020.
Yet even Apple’s most advanced chips can’t handle the full spectrum of tasks the company promises to carry out with AI. If you ask Siri to do something complicated, it may need to pass that request, along with your data, to models that are available only on Apple’s servers. This step, security experts say, introduces a host of vulnerabilities that may expose your information to outside bad actors, or at least to Apple itself.
“I always warn people that as soon as your data goes off your device, it becomes much more vulnerable,” says Albert Fox Cahn, executive director of the Surveillance Technology Oversight Project and practitioner in residence at NYU Law School’s Information Law Institute.