in

Programming – Python – using the openAI API to access chatGPT and DALL-E



#chatgpt #dalle2 #python #pythonprogramming #openai

example call to the script:
===========================================================================
python chat.py –mtype com –temperature 1.0 –prompt “Tell me why its a really good idea to subscribe to this youtube channel.”

creds.json
==================
{
“org”: “your_org”,
“key”: “your_key”
}

chat.py
===================================

import os, re, argparse, json, openai

# setup openai
def init_openai():
f = open(‘creds.json’)
creds = json.load(f)
openai.organization = creds[“org”]
openai.api_key = creds[“key”]
f.close()

# parse args
def init_argparse():
parser = argparse.ArgumentParser(description=’Make calls the the OpenAI API.’)
parser.add_argument(“–mtype”, type=str, default=”com”, help=”The type of model to use. com, cod, img, or emb == completion, code, image, or embedded”)
parser.add_argument(“–temperature”, type=float, default=1.0, help=”The temperature of the model. Must be greater than 0.0 and less than 1.0, Zero provides ‘safer’ responses and One provides ‘riskier’ responses”)
parser.add_argument(“–prompt”, type=str, default=”I am a clown”, help=”The input string (prompt), which can vary depending on the type of model you are using.”)
args = parser.parse_args()

mtype = args.mtype
temperature = args.temperature
prompt = re.sub(r”(S{1,20})”, “”, args.prompt.replace(‘n’, ”).strip())

return {“mtype”: mtype, “temperature”: temperature, “prompt”: prompt}

# run model, based on args
def run_model(input_data):
if(input_data[“mtype”] == “com”):

”’
Completion Test
”’
res = openai.Completion.create(
model=”text-davinci-003″,
prompt=input_data[“prompt”],
max_tokens=3000,
temperature=input_data[“temperature”],
echo=True,
user=”session000″
)

txtResponse = res.choices[0].text

print(txtResponse)

elif(input_data[“mtype”] == “mar”):
”’
Marv Test
”’
res = openai.Completion.create(
model=”text-davinci-003″,
prompt=input_data[“prompt”],
temperature=0.5,
max_tokens=60,
top_p=0.3,
frequency_penalty=0.5,
presence_penalty=0.0
)

txtResponse = res.choices[0].text

print(txtResponse)

elif(input_data[“mtype”] == “cod”):
”’
Coding Test
”’
res = openai.Completion.create(
model=”code-davinci-002″,
prompt=input_data[“prompt”],
temperature=input_data[“temperature”],
max_tokens=3500,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)

txtResponse = res.choices[0].text

print(txtResponse)

elif(input_data[“mtype”] == “img”):
”’
Image Test
”’
res = openai.Image.create(
prompt=input_data[“prompt”],
n=1,
size=”1024×1024″
)
image_url = res[‘data’][0][‘url’]

print(image_url)

elif(input_data[“mtype”] == “emb”):
”’
Embedding Test
”’
res = openai.Embedding.create(
model=”text-embedding-ada-002″,
input=input_data[“prompt”]
)

print(res)

elif(input_data[“mtype”] == “rec”):
”’
Recipe Test
”’

res = openai.Completion.create(
model=”text-davinci-003″,
prompt=input_data[“prompt”],
temperature=0.3,
max_tokens=2000,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)

txtResponse = res.choices[0].text

print(txtResponse)

else:
print(“invalid input parameters”)

def main():
init_openai()
input_data = init_argparse()
run_model(input_data)

if __name__ == “__main__”:
main()

AI Study Claims Human Fingerprints Aren't Actually Unique

AI Study Claims Human Fingerprints Aren’t Actually Unique

Apple asks its San Diego Siri quality control team to relocate to Texas

Apple asks its San Diego Siri quality control team to relocate to Texas