We choose up the place the first post in this series left us: confronting the duty of multi-step time-series forecasting.

Our first try was a workaround of types. The mannequin had been educated to ship a single prediction, similar to the very subsequent time limit. Thus, if we wanted an extended forecast, all we might do is use that prediction and feed it again to the mannequin, shifting the enter sequence by one worth (from ([x_{t-n}, …, x_t]) to ([x_{t-n-1}, …, x_{t+1}]), say).

In distinction, the brand new mannequin can be designed – and educated – to forecast a configurable variety of observations directly. The structure will nonetheless be primary – about as primary as attainable, given the duty – and thus, can function a baseline for later makes an attempt.

We work with the identical knowledge as earlier than, `vic_elec`

from `tsibbledata`

.

In comparison with final time although, the `dataset`

class has to alter. Whereas, beforehand, for every batch merchandise the goal (`y`

) was a single worth, it now’s a vector, identical to the enter, `x`

. And identical to `n_timesteps`

was (and nonetheless is) used to specify the size of the enter sequence, there may be now a second parameter, `n_forecast`

, to configure goal dimension.

In our instance, `n_timesteps`

and `n_forecast`

are set to the identical worth, however there is no such thing as a want for this to be the case. You would equally properly practice on week-long sequences after which forecast developments over a single day, or a month.

Other than the truth that `.getitem()`

now returns a vector for `y`

in addition to `x`

, there may be not a lot to be mentioned about dataset creation. Right here is the entire code to arrange the information enter pipeline:

```
n_timesteps <- 7 * 24 * 2
n_forecast <- 7 * 24 * 2
batch_size <- 32
vic_elec_get_year <- operate(12 months, month = NULL) {
vic_elec %>%
filter(12 months(Date) == 12 months, month(Date) == if (is.null(month)) month(Date) else month) %>%
as_tibble() %>%
choose(Demand)
}
elec_train <- vic_elec_get_year(2012) %>% as.matrix()
elec_valid <- vic_elec_get_year(2013) %>% as.matrix()
elec_test <- vic_elec_get_year(2014, 1) %>% as.matrix()
train_mean <- mean(elec_train)
train_sd <- sd(elec_train)
elec_dataset <- dataset(
title = "elec_dataset",
initialize = operate(x, n_timesteps, n_forecast, sample_frac = 1) {
self$n_timesteps <- n_timesteps
self$n_forecast <- n_forecast
self$x <- torch_tensor((x - train_mean) / train_sd)
n <- length(self$x) - self$n_timesteps - self$n_forecast + 1
self$begins <- sort(sample.int(
n = n,
dimension = n * sample_frac
))
},
.getitem = operate(i) {
begin <- self$begins[i]
finish <- begin + self$n_timesteps - 1
pred_length <- self$n_forecast
list(
x = self$x[start:end],
y = self$x[(end + 1):(end + pred_length)]$squeeze(2)
)
},
.size = operate() {
length(self$begins)
}
)
train_ds <- elec_dataset(elec_train, n_timesteps, n_forecast, sample_frac = 0.5)
train_dl <- train_ds %>% dataloader(batch_size = batch_size, shuffle = TRUE)
valid_ds <- elec_dataset(elec_valid, n_timesteps, n_forecast, sample_frac = 0.5)
valid_dl <- valid_ds %>% dataloader(batch_size = batch_size)
test_ds <- elec_dataset(elec_test, n_timesteps, n_forecast)
test_dl <- test_ds %>% dataloader(batch_size = 1)
```

The mannequin replaces the one linear layer that, within the earlier submit, had been tasked with outputting the ultimate prediction, with a small community, full with two linear layers and – non-obligatory – dropout.

In `ahead()`

, we first apply the RNN, and identical to within the earlier submit, we make use of the `outputs`

solely; or extra particularly, the `output`

similar to the ultimate time step. (See that earlier submit for a detailed discussion of what a `torch`

RNN returns.)

```
mannequin <- nn_module(
initialize = operate(kind, input_size, hidden_size, linear_size, output_size,
num_layers = 1, dropout = 0, linear_dropout = 0) {
self$kind <- kind
self$num_layers <- num_layers
self$linear_dropout <- linear_dropout
self$rnn <- if (self$kind == "gru") {
nn_gru(
input_size = input_size,
hidden_size = hidden_size,
num_layers = num_layers,
dropout = dropout,
batch_first = TRUE
)
} else {
nn_lstm(
input_size = input_size,
hidden_size = hidden_size,
num_layers = num_layers,
dropout = dropout,
batch_first = TRUE
)
}
self$mlp <- nn_sequential(
nn_linear(hidden_size, linear_size),
nn_relu(),
nn_dropout(linear_dropout),
nn_linear(linear_size, output_size)
)
},
ahead = operate(x) {
x <- self$rnn(x)
x[[1]][ ,-1, ..] %>%
self$mlp()
}
)
```

For mannequin instantiation, we now have a further configuration parameter, associated to the quantity of dropout between the 2 linear layers.

```
internet <- mannequin(
"gru", input_size = 1, hidden_size = 32, linear_size = 512, output_size = n_forecast, linear_dropout = 0
)
# coaching RNNs on the GPU presently prints a warning which will muddle
# the console
# see https://github.com/mlverse/torch/points/461
# alternatively, use
# system <- "cpu"
system <- torch_device(if (cuda_is_available()) "cuda" else "cpu")
internet <- internet$to(system = system)
```

The coaching process is totally unchanged.

```
optimizer <- optim_adam(internet$parameters, lr = 0.001)
num_epochs <- 30
train_batch <- operate(b) {
optimizer$zero_grad()
output <- internet(b$x$to(system = system))
goal <- b$y$to(system = system)
loss <- nnf_mse_loss(output, goal)
loss$backward()
optimizer$step()
loss$merchandise()
}
valid_batch <- operate(b) {
output <- internet(b$x$to(system = system))
goal <- b$y$to(system = system)
loss <- nnf_mse_loss(output, goal)
loss$merchandise()
}
for (epoch in 1:num_epochs) {
internet$practice()
train_loss <- c()
coro::loop(for (b in train_dl) {
loss <-train_batch(b)
train_loss <- c(train_loss, loss)
})
cat(sprintf("nEpoch %d, coaching: loss: %3.5f n", epoch, mean(train_loss)))
internet$eval()
valid_loss <- c()
coro::loop(for (b in valid_dl) {
loss <- valid_batch(b)
valid_loss <- c(valid_loss, loss)
})
cat(sprintf("nEpoch %d, validation: loss: %3.5f n", epoch, mean(valid_loss)))
}
```

```
# Epoch 1, coaching: loss: 0.65737
#
# Epoch 1, validation: loss: 0.54586
#
# Epoch 2, coaching: loss: 0.43991
#
# Epoch 2, validation: loss: 0.50588
#
# Epoch 3, coaching: loss: 0.42161
#
# Epoch 3, validation: loss: 0.50031
#
# Epoch 4, coaching: loss: 0.41718
#
# Epoch 4, validation: loss: 0.48703
#
# Epoch 5, coaching: loss: 0.39498
#
# Epoch 5, validation: loss: 0.49572
#
# Epoch 6, coaching: loss: 0.38073
#
# Epoch 6, validation: loss: 0.46813
#
# Epoch 7, coaching: loss: 0.36472
#
# Epoch 7, validation: loss: 0.44957
#
# Epoch 8, coaching: loss: 0.35058
#
# Epoch 8, validation: loss: 0.44440
#
# Epoch 9, coaching: loss: 0.33880
#
# Epoch 9, validation: loss: 0.41995
#
# Epoch 10, coaching: loss: 0.32545
#
# Epoch 10, validation: loss: 0.42021
#
# Epoch 11, coaching: loss: 0.31347
#
# Epoch 11, validation: loss: 0.39514
#
# Epoch 12, coaching: loss: 0.29622
#
# Epoch 12, validation: loss: 0.38146
#
# Epoch 13, coaching: loss: 0.28006
#
# Epoch 13, validation: loss: 0.37754
#
# Epoch 14, coaching: loss: 0.27001
#
# Epoch 14, validation: loss: 0.36636
#
# Epoch 15, coaching: loss: 0.26191
#
# Epoch 15, validation: loss: 0.35338
#
# Epoch 16, coaching: loss: 0.25533
#
# Epoch 16, validation: loss: 0.35453
#
# Epoch 17, coaching: loss: 0.25085
#
# Epoch 17, validation: loss: 0.34521
#
# Epoch 18, coaching: loss: 0.24686
#
# Epoch 18, validation: loss: 0.35094
#
# Epoch 19, coaching: loss: 0.24159
#
# Epoch 19, validation: loss: 0.33776
#
# Epoch 20, coaching: loss: 0.23680
#
# Epoch 20, validation: loss: 0.33974
#
# Epoch 21, coaching: loss: 0.23070
#
# Epoch 21, validation: loss: 0.34069
#
# Epoch 22, coaching: loss: 0.22761
#
# Epoch 22, validation: loss: 0.33724
#
# Epoch 23, coaching: loss: 0.22390
#
# Epoch 23, validation: loss: 0.34013
#
# Epoch 24, coaching: loss: 0.22155
#
# Epoch 24, validation: loss: 0.33460
#
# Epoch 25, coaching: loss: 0.21820
#
# Epoch 25, validation: loss: 0.33755
#
# Epoch 26, coaching: loss: 0.22134
#
# Epoch 26, validation: loss: 0.33678
#
# Epoch 27, coaching: loss: 0.21061
#
# Epoch 27, validation: loss: 0.33108
#
# Epoch 28, coaching: loss: 0.20496
#
# Epoch 28, validation: loss: 0.32769
#
# Epoch 29, coaching: loss: 0.20223
#
# Epoch 29, validation: loss: 0.32969
#
# Epoch 30, coaching: loss: 0.20022
#
# Epoch 30, validation: loss: 0.33331
```

From the best way loss decreases on the coaching set, we conclude that, sure, the mannequin is studying one thing. It in all probability would proceed enhancing for fairly some epochs nonetheless. We do, nevertheless, see much less of an enchancment on the validation set.

Naturally, now we’re interested in test-set predictions. (Bear in mind, for testing we’re selecting the “notably exhausting” month of January, 2014 – notably exhausting due to a heatwave that resulted in exceptionally excessive demand.)

With no loop to be coded, analysis now turns into fairly simple:

```
internet$eval()
test_preds <- vector(mode = "checklist", size = length(test_dl))
i <- 1
coro::loop(for (b in test_dl) {
enter <- b$x
output <- internet(enter$to(system = system))
preds <- as.numeric(output)
test_preds[[i]] <- preds
i <<- i + 1
})
vic_elec_jan_2014 <- vic_elec %>%
filter(12 months(Date) == 2014, month(Date) == 1)
test_pred1 <- test_preds[[1]]
test_pred1 <- c(rep(NA, n_timesteps), test_pred1, rep(NA, nrow(vic_elec_jan_2014) - n_timesteps - n_forecast))
test_pred2 <- test_preds[[408]]
test_pred2 <- c(rep(NA, n_timesteps + 407), test_pred2, rep(NA, nrow(vic_elec_jan_2014) - 407 - n_timesteps - n_forecast))
test_pred3 <- test_preds[[817]]
test_pred3 <- c(rep(NA, nrow(vic_elec_jan_2014) - n_forecast), test_pred3)
preds_ts <- vic_elec_jan_2014 %>%
choose(Demand) %>%
add_column(
mlp_ex_1 = test_pred1 * train_sd + train_mean,
mlp_ex_2 = test_pred2 * train_sd + train_mean,
mlp_ex_3 = test_pred3 * train_sd + train_mean) %>%
pivot_longer(-Time) %>%
update_tsibble(key = title)
preds_ts %>%
autoplot() +
scale_colour_manual(values = c("#08c5d1", "#00353f", "#ffbf66", "#d46f4d")) +
theme_minimal()
```

Examine this to the forecast obtained by feeding again predictions. The demand profiles over the day look much more life like now. How concerning the phases of utmost demand? Evidently, these are usually not mirrored within the forecast, not any greater than within the “loop approach”. In truth, the forecast permits for fascinating insights into this mannequin’s persona: Apparently, it actually likes fluctuating across the imply – “prime” it with inputs that oscillate round a considerably larger stage, and it’ll shortly shift again to its consolation zone.

Seeing how, above, we supplied an possibility to make use of dropout contained in the MLP, it’s possible you’ll be questioning if this could assist with forecasts on the take a look at set. Seems it didn’t, in my experiments. Perhaps this isn’t so unusual both: How, absent exterior cues (temperature), ought to the community know that prime demand is arising?

In our evaluation, we will make a further distinction. With the primary week of predictions, what we see is a failure to anticipate one thing that *couldn’t* moderately have been anticipated (two, or two-and-a-half, say, days of exceptionally excessive demand). Within the second, all of the community would have needed to do was keep on the present, elevated stage. It is going to be fascinating to see how that is dealt with by the architectures we focus on subsequent.

Lastly, a further thought you might have had is – what if we used temperature as a second enter variable? As a matter of truth, coaching efficiency certainly improved, however no efficiency impression was noticed on the validation and take a look at units. Nonetheless, it’s possible you’ll discover the code helpful – it’s simply prolonged to datasets with extra predictors. Due to this fact, we reproduce it within the appendix.

Thanks for studying!

```
# Information enter code modified to accommodate two predictors
n_timesteps <- 7 * 24 * 2
n_forecast <- 7 * 24 * 2
vic_elec_get_year <- operate(12 months, month = NULL) {
vic_elec %>%
filter(12 months(Date) == 12 months, month(Date) == if (is.null(month)) month(Date) else month) %>%
as_tibble() %>%
choose(Demand, Temperature)
}
elec_train <- vic_elec_get_year(2012) %>% as.matrix()
elec_valid <- vic_elec_get_year(2013) %>% as.matrix()
elec_test <- vic_elec_get_year(2014, 1) %>% as.matrix()
train_mean_demand <- mean(elec_train[ , 1])
train_sd_demand <- sd(elec_train[ , 1])
train_mean_temp <- mean(elec_train[ , 2])
train_sd_temp <- sd(elec_train[ , 2])
elec_dataset <- dataset(
title = "elec_dataset",
initialize = operate(knowledge, n_timesteps, n_forecast, sample_frac = 1) {
demand <- (knowledge[ , 1] - train_mean_demand) / train_sd_demand
temp <- (knowledge[ , 2] - train_mean_temp) / train_sd_temp
self$x <- cbind(demand, temp) %>% torch_tensor()
self$n_timesteps <- n_timesteps
self$n_forecast <- n_forecast
n <- nrow(self$x) - self$n_timesteps - self$n_forecast + 1
self$begins <- sort(sample.int(
n = n,
dimension = n * sample_frac
))
},
.getitem = operate(i) {
begin <- self$begins[i]
finish <- begin + self$n_timesteps - 1
pred_length <- self$n_forecast
list(
x = self$x[start:end, ],
y = self$x[(end + 1):(end + pred_length), 1]
)
},
.size = operate() {
length(self$begins)
}
)
### relaxation similar to single-predictor code above
```

Picture by Monica Bourgeau on Unsplash